Chapter
1
The
1994 Definition of the Field
Instructional
Technology is the theory and practice of design, development, utilization
management and evaluation of processes and resources for learning.
For at
least forty years the field of Instructional Technology periodically has
pursued processes of collective self-examination, resulting in statements which
describe it self professionally. In 1963 such efforts produced the first formal
definition of the field. This definition has been updated a number of times,
with each change providing new directions for the field. Since the last formal
definition seventeen years ago, dramatic changes in the profession and in
technology have occurred. Consequently, this process of reexamination has once
again evolved. The result of this
collective analysis is the 1994 definition of the field shown above. This book
will explore the dimensions of the new definition and its implications for both
theory and practice. First, Chapter One will introduce the new definition by discussing
the assumptions on which it was based and the implications of its terminology.
Assumptions of the Definition
The Nature of the Definition
Israel Scheffler (1960) distinguishes between general
definitions and scientific definitions. According to Scheffler, scientific
definitions are technical, theoretically based and require special knowledge in
order to understand them. They are embedded in a context of research. General
definitions, on the other hand, can be understood by the public or other
professionals. A general definition explains how a term is to be understood in
the context in which it is used. Scheffler identifies three types of general
definitions: stipulative, descriptive and programmatic. The definition of the field presented here meets Scheffler's
criteria for a general definition of a stipulative and programmatic nature.
This 1994 definition of the field is based on prior usage, stipulating what the
field is equivalent to and encompasses, and suggests areas where research is
needed. Therefore, it is a stipulative definition with programmatic
implications intended to serve communication purposes.
A field can be defined in several ways: by the roles
practitioners play, by areas of special knowledge, or by the requirements for
being a professional in the field (Marriner-Tomey, 1989). Definitions can be
logical or metaphorical or a combination of both. For example, a role in a
field can be described through metaphor, such as portraying the instructional
designer as an artist or a craftsman.
Before a definition is developed, parameters for the
definition must be clarified. These parameters are the assumptions that provide
a basis for making decisions. For a definition to be formulated, decisions must
be made first about the scope, purpose, viewpoint, audience and essential
characteristics to be taken into account. The 1994 definition of the field is
based on the following assumptions:
·
Instructional technology
has evolved from a movement to a field and profession. Since a profession is
concerned with a knowledge base, the 1994 definition must identify and
emphasize Instructional Technology as a field of study as well as practice. In
contrast, the 1977 definition placed more emphasis on practitioner roles.
·
A revised definition
of the field should encompass those areas of concern to practitioners and
scholars. These areas are the domains of the field.
·
Both process and
product are of vital importance to the field
and need to be reflected in the definition.
·
Subtleties not
clearly understood or recognized by the typical Instructional Technology
professional should be removed from the definition and its more extended
explanation.
Although not stated explicitly, several important
characteristics of the field are implicit in the definition. First, it is
assumed that both research and practice in the field are carried out in
conformity with the ethical norms of the profession. It is further assumed that
professional decisions of instructional
technologists are guided by their understanding of those interventions which
are more likely to yield effective results. Being aware of the knowledge base
of 'what works' in diverse circumstances and using that knowledge base are
important hallmarks of the Instructional Technology professional. Professional
instructional technologists who fail to follow effective practices betray their
lack of understanding of or commitment to the norms of the field.
Closely related to the concept of effectiveness is
efficiency. The definition also assumes that practice in this field is
characterized by efficient, economical pursuit of ends. Another hallmark that
differentiates the professional from the lay person is the ability to achieve
effective, productive ends in a way that is most direct, adroit, and
cost-beneficial. There are many activities conducted by professional
instructional technologists that are also conducted by others, such as
developing computer courseware. selecting materials to use with iearners, or
making video recordings. The difference, it is assumed, is that the
professional will be able to conduct these activities with a more efficient use
of human and material resources. These characteristics and the values they
imply are discussed further in Chapter Three.
Educational/Instructional Technology
Historically, the field has been called both 'Educational
Technology' and 'Instructional Technology'. Those who prefer 'Instructional
Technology' make two points. Their first point is that the word 'instructional'
is more appropriate for describing the function of technology. Secondly, they
argue that 'instructional' is more appropriate because 'Educational Technology'
commonly implies a school or educational setting. To many the term
'instructional' incorporates not only K-12 settings, but training situations as well. Knirk and
Gustafson (1986) assert that 'instructional' relates primarily to teaching and
learning problems, while 'educational' is too broad, encompassing all aspects
of education.
Those who prefer the use of 'Educational Technology' argue
that since instruction is considered by many as a part of education the term
helps maintain a broader focus for the field (Association for Educational
Communications and Technology, 1977; Saettler, 1990). They believe that
'educational' refers to learning in many environments, including home, school,
work, and that the term 'instructional' connotes only school environments.
It seems that both groups have used the same rationale to
justify use of different terms. There are also those who have used the terms
interchangeably for many years as noted by Finn in 1965, nearly thirty years
ago. The term 'Educational Technology' is preferred in England and Canada;
however, the term 'Instructional Technology' is now widely used in the United
States.
In the 1977 Association for Educational Communications and
Technology (AECT) definition a distinction is also made between 'Educational'
and 'Instructional Technology' and 'technology in education' based on the scope
of each term. In 1977 'Educational Technology' was used to describe a subset of
education which was involved in solving problems related to all aspects of
human learning through complex, interrelated processes. This interpretation
allowed 'Educational Technology' to encompass learning through mass media and
support systems for instruction including management systems. 'Technology in
education' was used to describe technological applications used by support systems
for education such as grade reporting, scheduling and finance. 'Instructional
Technology' was defined as a subset of 'Education Technology' using the
rationale that instruction is a subset of education which deals only with
learning that is purposive and controlled (AECT, 1977).
Since 1977 the distinctions between these terms have
disappeared. Currently, all three terms are used to describe applications of
technological processes and tools which can be used to solve problems of
instruction and learning. Today the profession is centering activities and
concepts around instruction more and more, even if the instruction is
incidental (indirect) rather than intentional (constructed or directed). In
other words, there is less emphasis on problems involved with all aspects of
education and more emphasis on problems related to the effect of incidental or
intentional instruction on learning. Therefore, it is difficult to sustain the
proposition that 'Instructional Technology' and 'technology in education' are
subsets of 'Educational Technology'.
At present the terms 'Educational Technology' and
'Instructional Technology' are used interchangeably by most professionals in
the field. Because the term 'Instructional Technology' (a) is more commonly
used today in the United States, (b) encompasses many practice settings, (c)
describes more precisely the function of technology in education, and (d)
allows for an emphasis on both instruction and learning in the same
definitional sentence, the term 'Instructional Technology' is used in the 1994
definition, but the two terms are considered synonymous.
The
Orientation of the Definition
When
the Instructional Technology movement was in its infancy in the 1950s and the
1960s, many of the tools and theories of today were inconceivable. Programmed
instruction developers foresaw computer-assisted instruction, but not
interactive video or interactive multimedia. Audiovisual specialists saw the
potential of games and simulations, but not of video games. The steps in
instructional design were simpler then. One had only to master a few techniques
and a fundamentally linear theory. The body of research was small because the
mass of research on visual learning and other areas was still to come.
Since then society, education and Instructional Technology
have become more diverse. The post-1960s period has been one of great technological
creativity. Joel Mokyr, an economist from Northwestern University, believes
that diversity is the key to continuing technological creativity in a culture
(Mokyr, 1990). Diversity, not necessity, is the mother of invention according
to Mokyr. Arnold Toynbee, the British historian, argues that when a more
dynamic, creative civilization comes into conflict or contact with a more
static, less creative civilization, the dynamic civilization will dominate. The
society that loses its ability to change and create is superseded (Toynbee,
1957). Similarly, the field that becomes static and uncreative is likely to
become less prominent. A definition that clarifies the diversity of interests
in the field will identify problems and areas of opportunity that can act as a
catalyst for creativity and invention. We now turn to two questions: "What
is technology?" and "How essential are the concepts of 'science' and
'systematic' to the meaning of technology?"
The Relationship Between Science and
Technology. In his most recent history of
Instructional Technology, Saettler (1990) speaks of technology as focusing on
improvement of skills and organization of work rather than on tools and
machinery. Modem technology is described as systematized practical knowledge
which improves productivity. Similarly, Heinich, Molenda and Russell (1993)
define Instructional Technology as "the application of our scientific
knowledge about human learning to the practical tasks of teaching and
learning."
Instructional Technology is often defined as the
application of principles of science in order to solve learning problems, a
point of view based upon the assumption that science and technology are inseparable.
This has proved to be a myth. Science and technology are related, but
separable. When considering everyday life in the 15th to 18th centuries, French
historian Ferdinand Braudel says that:
In a way everything is technology: not only man's most
strenuous endeavors but also his patient and monotonous efforts to make a mark
on the external world; not only the rapid changes we are a little too ready to
label revolutions . . . but also the slow improvements in processes and tools,
and those innumerable actions which may have no immediate innovating
significance but which are the fruit of accumulated knowledge . . . "What
I call technology", Marcel Mauss used to say, "is a traditional
action made effective". In other words one which implies the action of one
man or generation upon another . . there are times when technology represents
the possible, which for various reasons—economic, social or psychological—men
are not yet capable of achieving or fully utilizing; and other times when it is
the ceiling which materially and technologically blocks their efforts. In the
latter case, when one day the ceiling can resist the pressure no longer, the
technological breakthrough becomes a point of departure for rapid acceleration.
However, the force that over-comes the obstacle is never a simple internal
development of the technology or science (Braudel, 1979, pp. 334, 335).
Braudel reminds us that technology is not just the
application of science, but that it includes improvements in processes and
tools that allow one generation to build on the knowledge of a previous
generation.
In keeping with Braudel's point of view, the idea that
scientists make discoveries and technologists apply them is no longer in vogue
among historians (Schwartz, 1992). Things are now thought to be more complicated
than that, and technology is believed to stem from other sources in addition to
science, such as art and social innovation (Brooks, 1980; Roller, 1971).
Therefore, the 1994 definition does not include the concept of technology as
only the application of science since this is not totally supported by current
literature.
The Concept of
Systematic. The concept of 'systematic'
is implicit in the definition of technology proposed by Everett Rogers. Rogers
says that technology is "a design for instrumental action that reduces the
uncertainty in the cause-effect relationships involved in achieving a desired
outcome" (Rogers, 1983, p. 12). He goes on to say that technology usually
has two 'components: a hardware aspect, consisting of tools, and a software
aspect, consisting of information.
Cass Gentry (1991) reviews several definitions of
Instructional Technology that do not include 'systematic' as an essential
characteristic:
the body of knowledge resulting from the application of
the science of teaching and learning to the real world of the classroom,
together with the toois and methodologies developed to assist in these applications
(Dieuzeide, as cited in Gentry, 1991, p. 4).
is concerned with the overall methodology and set of
techniques employed in the application of instructional principles (Cleary, et.
al. as cited in Gentry, 1991, p. 4)
an effort with or without machines, available or utilized,
to manipulate the environment of individuals in the hope of generating a change
in behavior or other learning outcome (Knezevich and Eye, as cited in Gentry,
1991, p. 5)
Still,
based on other definitions reviewed, Gentry defines Instructional Technology as
"the systemic and systematic application of strategies and techniques
derived from behavioral and physical science concepts and other knowledge to
the solution of instructional problems." By 'systemic' he means that all
things impact and are affected by other things in their environment. In
comparison he defines educational technology as "the combination of
instructional, learning, developmental, managerial, and other technologies as
applied to the solution of educational problems" (Gentry, 1991, p. 7-8).
The concept of systematic is implicit in this 1994
definition because the domains are equivalent to the steps in a systematic
process for developing instruction. Nevertheless, the 1994 definition de-emphasizes
systematic in the sense of a linear process that is the totality of the technological
approach.
One of the most comprehensive systems-oriented definitions
of Instructional Technology was given by Robert Gagne who said that
Instructional Technology is concerned with studying and establishing conditions
for effective learning.
Some of these conditions were, to be sure, the capacities and
qualities of the individual human learner,
including such things as visual and auditory abilities, speech and print
comprehension abilities, and so on. Other conditions, in fact the other large
set, were media-based conditions, pertaining to the kind of presentation made
to the learner, and to its timing, sequence and organization (Gagne, 1990, o.
3).
Even though this definition is focused on the research
questions pursued by the profession, it seems limited now in light of the
current constructivist descriptions of learning environments. However, if one
assumes that establishing conditions for learning includes establishing
learning environments, Gagne's definition still remains a comprehensive, yet
precise statement of the concerns of Instructional Technology.
The Structure of
the Definition. The 1994 definition
recognizes both the established traditions and trends in the field. In the
1970s terminology of the field was rooted in different types of media,
including computer-assisted instruction and instructional television, and in
teaching activities, such as independent study and simulations. In contrast,
the field's current literature contains not only media descriptors, but also
learning variables and strategies with more emphasis on techniques and theories
than on media categories. In addition, the areas identified by terminology are
covered in more depth today. The diversity of the field and profession is
reflected in its current terminology and the range of Instructional Technology
doctoral dissertation topics (Caffarella and Sachs, 1988; Caffarella, 1991).
The 1994 definition provides for current diversity and specialization while
incorporating the traditional components of definitions and domains in the
field.
The revised definition is:
Instructional
Technology is the theory and practice of design, development, utilization,
management and evaluation of processes and resources for learning.
Each
domain in the field contributes to the theory and practice which is the basis
for the profession. The domains are independent, though related. There is no linear
relationship between the domains. Figure 1.1, The Definition of
Instructional Technology, highlights the relationship of domains of the field
to theory and practice.
Components of the Definition
According
to the 1994 definition, Instructional Technology is:
·
the theory and
practice;
·
of design,
development, utilization, management and evaluation;
·
of processes and
resources; and
·
for learning.
The definition's meaning is derived from each component.
This section explains the components and how they describe what professionals
in this field do and study.
The
Theory and Practice
A
profession must have a knowledge base that supports practice. Each domain of
Instructional Technology includes a body of knowledge based on both research and experience. The
relationship between theory and practice is nurtured by a mature field. Theory
consists of the concepts, constructs, principles, and propositions that
contribute to the body of knowledge. Practice is the application of that
knowledge to solve problems. Practice can also contribute to the knowledge base
through information gained from experience.
Both theory and practice in Instructional Technology make
extensive use of models. Procedural models, which describe how to perform a
task, help to connect theory and practice. Theory can also generate models that
visualize relationships; these models are called conceptual models (Richey,
1986).
Of the
Design, Development, Utilization, Management and Evaluation
These
terms refer to both areas of the knowledge base and to functions performed by
professionals in the field. These are the five basic domains of Instructional
Technology. Each of these functions has sufficient uniqueness and scope to have
evolved as a separate area of study. The domain of design represents the
largest theoretical contribution of Instructional Technology to the larger
field of education. The domain of development is also mature and represents the
largest contribution to practice. The domain of utilization, on the other hand,
is not well developed either theoretically or practically. Although much has
been done in the area of media utilization, other areas of the domain languish
for lack of attention. The domain of management has always been part of the
field because the resources to support each function must be organized and
supervised (managed). The domain of evaluation still rests on research from
other fields. The major contribution from this area of study is fo mative
evaluation. The domains of Instructional Technology will be discussed in
Chapter Two.
Of
Processes and Resources
This
phrase encompasses the traditional elements of both process and product in the
definition. A process is a series of operations or activities directed towards
a particular result. In Instructional Technology there are both design and
delivery processes. A process implies a sequence involving input, actions and
output. The more recent research into instructional strategies and their
relationship to types of learning and media is an example of the study of
processes (Leshin, Pollock and Reigeluth, 1992). Instructional strategies are
methods for selecting and sequencing activities. Examples of processes are delivery
systems, such as teleconferencing; types of instruction, such as independent
study; models for teaching, such as the inductive approach; and models for the
development of instruction, such as instructional systems design. A process is
usually procedural, but not always. When a formal set of steps is followed, the
process is procedural, but when the order of actions is less structured, the
process may not be procedural.
Resources are
sources of support for learning, including support systems and instructional
materials and environments. The field
grew from an interest in the use of instructional materials and communications
processes, but resources are not only the devices and materials used in the
process of learning and teaching, but also people, budget, and facilities.
Resources can include whatever is available to help individuals learn and
perform competently.
For
Learning
The purpose of Instructional Technology is to affect and
effect learning. The phrase was chosen to emphasize learning outcomes and
clarify that learning is the goal and that instruction is a means to learning.
Learning, as evidenced by a change in knowledge, skills or attitudes, is the
criterion for instruction. In the definition, learning refers to "the relatively permanent change in a
person's knowledge or behavior due to experience" (Mayer, 1982, p.
1040). Berlo (1960) compares learning to the communication process by showing
that the ingredients in learning parallel the ingredients in communication.
Thus, in communication a message moves through a channel to a decoder who
receives it and encodes a new message that provides feedback to the sender.
While engaged in the learning process, one perceives, interprets and responds
to a stimulus and learns from the consequences of the response.
Evolutionary
Nature of the Definition
The 1994 definition evolved from previous definitions of
the field. This section will explain how the definition evolved.
Historical
Background
Saettler
(1990) admits having difficulty identifying the source of the term 'educational
technology'.
It is unclear who first used the term educational technology. We have documented evidence that Franklin
Bobbitt and W.W. Charters used educational
engineering in the 1920's. This author first heard educational technology used by W. W. Charters in an interview with
this author in 1948 . . . The late James D. Finn used instructional technology
in a forward he wrote for the first publication of the NEA sponsored Technological
Development Project in 1963. However, the focus of the application was audiovisual communications (Saettler,
1990, p. 17).
Educators like John Dewey (1916), William Heard Kilpatrick
(1925) and W.W. Charters (1945) laid the foundation for the concept of educational
technology. But modem technology is primarily a post World War II idea. While
the process definition of Instructional Technology has its roots in the
educational practice of the progressive era, the popular belief is that
Instructional Technology evolved from the audiovisual communications movement
(Saettler, 1990). Educational technology was first seen as a tool technology.
It referred to the use of devices, media and hardware for educational purposes.
Thus, the term was synonymous with the phrase 'teaching with audio-visual aids'
(Rountree, 1979).
The field is a result of the flowing together of three
streams of interest: media in education, psychology of instruction and
systematic approaches to education (SeeIs, 1989). Two individuals, Edgar Dale
and James Finn, are credited with making major contributions to the development
of modem Instructional Technology and its earliest definition. Dale developed
the Cone of Experience which is shown in Figure 1.2. The cone served as a
visual analogy for levels of concreteness and abstractness of teaching methods
and instructional materials. The purpose of the cone was to represent a range
of experience from direct experience to symbolic communication. It was based on
a concrete to' abstract continuum.
It was Dale's belief that abstract symbols and ideas could
be more easily understood and retained by the learner if they were built on
concrete experience. Dale's cone melded the educational theory of John Dewey
and ideas in vogue in psychology at the time. The Cone of Experience was the
first attempt to build a rationale that involved both learning theory and
audiovisual communications (Dale, 1946).
Jim Finn was a doctoral student of Edgar Dale. Finn has
been credited with moving the field of audiovisual communications to
instructional technology (AECT, 1977). A major thrust of Finn's work was to
change the role of audiovisual communications personnel functionally supportive
of the instructional process to one of leadership and innovation. Finn asserted
that for audiovisual communications to become a profession the field must
develop its own theory, research and technique (Finn, 1953). He argued that
Instructional Technology is an intellectual process that must be based on
research (Finn, 1960). Finn made two other contributions to the field. He was a
strong advocate for changing the name of the field to Instructional Technology
(Finn, 1965), and he promoted the application of systems theory as a basis for
the field (Finn, 1956). Finn's concept of integrated systems and processes
incorporated and expanded Dale's idea of the interrelatedness of materials and
processes.
Definitions
of Instructional Technology
AECT's
1963 Definition. There have been many definitions of educational technology
(AECT, 1977; Ely, 1983). Six of the definitions are considered mainstays
because they are cited most frequently in the literature (Ely, 1973; Ely,
1983). The Technological Development Project of the National Education
Association provided the first definition.
Audiovisual communications is that branch of educational
theory and practice primarily concerned with the design and use of messages
which control the learning process. It undertakes: (a) the study of the unique
and relative strengths and weaknesses of both pictorial and nonrepresentational
messages which may be employed in the learning process for any purpose; and (b)
the structuring and systematizing of messages by men and instruments in an
educational environment. These undertakings include the planning, production,
selection, management, and utilization of both components and entire
instructional systems. Its practical goal is the efficient utilization of every
method and medium of communication which can contribute to the development of
the learner's full potential (Ely, 1963, pp. 18-19).
The purpose of the 1963 definition was "to provide a
working definition for the field of instructional technology which will serve
as a framework for future developments and lead to an improvement of
instruction" (Ely, 1963, p. 8). The definition was one stimulus for
changing the name of the organization from Department of Audiovisual
Instruction to the Association for Educational Communications and Technology.
In the report on the proposed definition the Task Force on Definition and Terminology
stated, "The audiovisual
communications label is used at this time as an expedient. Another
designation may evolve, and if it does, then it should be substituted"
(Ely, 1963, pp. 18-19). Ely believed that there was value in keeping the general
term of audiovisual communications"
until personnel in the field were uncomfortable with it (Ely, D. P. Personal
Communication, October, 1963).
Another important factor in the 1963 definition was the
listing of the roles or functions of those involved with the field. This
approach helped move the field from a product orientation, which focused on
things and identified the field with machines, to a process orientation, which
dictated a dynamic and continuous relationship between events (Ely, 1963).
Finally, there is the mention of efficient utilization.
Efficiency is one of the key characteristics of any technology, including
instructional technology (Heinich, 1984). In educational circles efficiency can
be a "loaded" word because it generates an emotional response.
Perhaps this is the reason that the word efficiency does not appear in any of
the other major definitions of educational technology. Another acknowledged difficulty
with this definition was the decision to use the word 'control'. It was deliberately
chosen to suggest that outcomes were highly predictable (Ely, 1973)
Commission on
Instructional Technology's 1970 Definition.
The second major effort to define the field was made by the President's Commission
on Instructional Technology. The commission's report stated that the field
could be defined in two ways:
In its more familiar sense it means that media born of the
communications revolution which can be used for instructional purposes
alongside of the teacher, textbook and blackboard . . . the pieces that make up
instructional technology: television, films, overhead projectors, computers and
other items of 'hardware' and 'software' . . . [and]
[Instructional technology] . . . is a systematic way of
designing, carrying out, and evaluating the total process of learning and
teaching in terms of specific objectives, based on research in human learning
and communication and employing a combination of human and non-human resources
to bring about more effective instruction (Commission on Instructional Technology,
1970, p. 21).
The two definitions perpetuated the ambiguity surrounding
educational technology. There were several new aspects to the latter
definition. First, there was the idea that Instructional Technology must
include specific objectives. This is probably due to the influence of B. F.
Skinner (1954) and Robert Mager (1962). Their ideas were adopted widely by
practitioners in the field. Second, there was the idea that methods and
techniques used to teach specific objectives should be based on research.
Third, there was the phrase 'more effective instruction'. Effectiveness is also
a key characteristic of technology (Heinich, 1984). Nevertheless, the word
'effectiveness' has not been included in the major definitions of the field.
Perhaps the reason for this is because effectiveness is typically assumed once
Instructional Technology principles are utilized.
A subtle but important difference between the 1994
definition and the 1963 definition is the shift in vocabulary from 'systems' to
'systematic'. The concept of systems can be complicated; perhaps the use of the
word 'systematic' was an attempt to simplify and clarify the process of
Instructional Technology.
Silber's 1970 Definition. The third influential definition
was provided by Kenneth Silber who later chaired the AECT Committee on Definition
and Terminology.
Instructional Technology is the Development (Research,
Design, Production, Evaluation, Support-Supply, Utilization) of Instructional
Systems Components (Messages, Men, Materials, Devices, Techniques, Settings)
and the Management of that development (Organization, Personnel) in a
systematic manner with the goal of solving educational problems (Silber, 1970,
p. 21).
This definition differs in three ways from the 1963
definition. The notion of development is different in this definition than it
was in the earlier definition. In the first definition 'development' refers to
the development of human potential, an idea that is important to the more traditional
approach of educational psychology. In Silber's definition 'development' is
used as an inclusive term to mean designing, producing, using and evaluating
technology for instruction. The 1970 definition assumes, as does the 1963
definition, that Instructional Technology is a man-machine system and that
experience is interrelated with materials. The 1970 definition follows previous
definitions by identifying roles performed by educational technologists. It
differs in that it changes the scope of educational technology by listing
additional components of the field (i.e. techniques, settings). The extension
of components provided opportunity for new investigations under the name
educational technology. Nevertheless, the focus on roles and components gave
many the impressions that educational technology was oriented more to practice
than to theory. The idea of 'problems' is first introduced in Silber's
definition and is at the core of the definition. The idea of educational
technology as a problem solving activity will be included in subsequent definitions.
Finally, Silber's definition does not stand neatly by itself. It is essential
to read the article which elaborates on the definition in order to understand
it. Subsequent definitions also will depend on similar elaboration.
MacKenzie
and Eraut's 1971 Definition. This
definition from the United Kingdom is succinct, but it seems too broad to be
useful for accurately describing educational technology.
Educational technology is the systematic study of the
means whereby educational ends are achieved (as cited in Ely, 1973, p. 52).
Previous definitions included the words !machine',
'instruments', or 'media'. This definition is the first that does not mention
hardware or software. It is a process-based account of the field; although
hardware may be inferred as part of the means. While the MacKenzie and Eraut
definition does not explicitly address the issue, the use of the word 'study'
seems to place more emphasis on the idea that Instructional Technology is an
intellectual endeavor than do the two 1970 definitions which do not mention
this word. MacKenzie and Eraut expand the concept of 'study' by referring to a
study of the means. This extension is a much broader concept than the study of
pictorial and non-representational messages. The 'systematic study of the
means' also infers that educational technology may be considered an area of
inquiry. Note also the use of the term systematic. MacKenzie and Eraut thus
suggest educational technology is an academic field or discipline. Although the
idea is not present in sub- sequent definitions; it is reintroduced in this
1994 definition.
AECT's 1972 Definition. This definition was approved by the Association and was
an outgrowth of the Committee on Definition and Terminology which was active at
that time.
Educational technology is a field involved in the
facilitation of human learning through the systematic identification, development,
organization and utilization of a full range of learning resources and through
the management of these processes (AECT, 1972, p. 36).
This definition states that educational technology is a
systematic process for developing and using instructional resources. These
ideas are carried over from the 1963, 1970, and 1971 definitions and are
incorporated in the 1994 definition. Many of the same roles identified in
previous definitions are repeated in this definition (e.g. development,
organization, management and utilization). The 1972 definition attempts to
identify educational technology as a field (Ely, 1972). The ideas of 'control'
and 'specific objectives' are replaced in this definition by the ideas of
'process' and 'facilitation of human learning' (Ely, 1983). This definition
left open the possibility that educational technology could be concerned with
ends other than pre-determined ends specified as objectives. The use of the
word facilitation in definitions of educational technology began and ended
here; although Donald Ely commented that the word 'facilitation' would have
been better than 'control' in the 1963 definition (Ely, D.P, Personal
Communication, January, 1993).
One characteristic of the 1972 definition was the decision
to define audiovisual communications as a field. This action promoted the idea
that audiovisual communications is a profession. During the development of this
definition an important philosophical debate centered around Robert Heinich's
idea that the field was defined by the concept of 'system' and Kenneth Silber's
emphasis on the function of individualizing instruction as a defining
characteristic.
AECT's 1977 Definition. The complete official
definition was sixteen pages in length. This is an abbreviated version.
Educational technology is a complex, integrated process
involving people, procedures, ideas, devices and organization for analyzing
problems and devising, implementing, evaluating and managing solutions to those
problems involved in all aspects of human learning (AECr, 1977, p. I).
The 1977 definition attempted to identify educational
technology as a theory, a field and a profession. With the exception of AECT's
1963 definition, prior attempts at definition had not emphasized educational
technology as a theory. The change in wording from the 'men' in prior
definitions to 'people' is also noteworthy. It indicates a greater sensitivity
to gender issues by both the committee and the AECT organization.
Conclusions
When one compares the definitions just presented, it
becomes clear that several concepts appear in many of the definitions although
the context and meaning of the concept may vary. Words like 'systematic',
'resources', and 'processes' occur frequently. Words that are precursors of the
domains in the 1994 definition also occur in earlier definitions, including
'design', 'development', 'use' or 'utilization', 'organization' or 'management'
and 'evaluation'. On the other hand, words used in earlier definitions have
been eliminated from later definitions, words including 'control',
'facilitation', 'procedures', 'man/machine', and 'devices'. Each definition
makes a statement of purpose related to goals, means/ends, learning and problem
solving. Yet when we look at the definitions chronologically, it is interesting
that the 1994 definition is closer to the 1963 and 1971 definitions than to
later definitions. This is because the stated goal in both was to effect the
learning process. It is also because the 1963 definition was based more on
theory and practice than on the functions emphasized in later definitions.
In 1973 Ely discussed the idea that definitions of
Educational Technology share three major themes which present the ideas that
educational technology is:
·
a systematic
approach,
·
a study of means, and
·
a field directed
toward some purpose (Ely, 1973).
The 1994 definition interprets means as processes and
resources and systematic as the domains of design, development, utilization,
management, and evaluation. It reflects the evolution of Instructional Technology
from a movement to a field and a profession and the contributions this field
has made to theory and practice.
23
|
The
following sources are suggested for further study of the topics in this
chapter. The complete list of references, including those cited in this chapter.
can be found at the end of the book.
Branyan-Broadbent,
B. and Wood, R. K. (Eds.). (1993). Educational
media and technology yearbook. Englewood, CO: Libraries Unlimited.
Ellington,
H. and Harris, D. (1986). Dictionary of instructional technol- ogy. London:
Kogan Page.
Eraut,
M. (Ed.). (1989). The international
encyclopedia of educational
technology. NY: Pergamon Press.
Unwin,
D. and McAleese, R. (Eds.). (1988). The
encyclopaedia of educational media communications and technology (2nd Ed.). NY: Greenwood Press.
Tidak ada komentar:
Posting Komentar